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Gaussian	Elimination	is	Not	Optimal	(1969)

Volker	Strassen

Matrix	multiplication	is	such	a	simple	operation	that	 it	 is	hard	to	imagine	there	is	anything
left	to	learn	about	it.	To	multiply	two	n	×	n	matrices	A	and	B	and	get	an	n×n	product	matrix
C,	compute	the	n2	dot	products	of	rows	of	A	with	columns	of	B.	Each	of	those	dot	products
involves	 n	 multiplications	 of	 numbers	 and	 n	 −	 1	 additions,	 for	 a	 total	 of	 n3	 number
multiplications	and	n2(n	−	1)	additions.	What	else	could	there	be	to	say?

A	great	deal,	it	turns	out.	The	German	mathematician	Volker	Strassen	(b.	1936)	may	have
been	trying	to	prove	a	lower	bound,	that	n3	multiplications	are	necessary	as	well	as	sufficient,
when	he	discovered	this	algorithm.	The	paper	entails	two	remarkable	ideas.	The	first	is	that	a
divide-and-conquer,	recursive	algorithm	might	beat	the	conventional	algorithm,	if	there	is	a
way	to	compute	the	product	of	2	×	2	matrices	with	fewer	than	8	multiplications.	Even	after
seeing	this	proved,	it	still	seems	surprising	that	the	overhead	of	implementing	the	recursion	is
asymptotically	 repaid.	 The	 other	 amazing	 discovery	 is	 that	 two	 2	 ×	 2	 matrices	 can	 be
multiplied	with	only	7	multiplications.	Any	high	school	student	might	have	figured	that	out
scribbling	 on	 a	 pad	 of	 paper	 between	 classes;	 in	 the	 centuries	 that	 people	 have	 been
multiplying	matrices,	 nobody	 noticed	 because	 nobody	 had	 a	 reason	 to	 try.	 (An	 analogous
algorithm	 for	 integer	 multiplication,	 due	 to	 Karatsuba	 and	 Ofman	 (1962),	 was	 already
known.	It	recursively	computes	the	product	of	two	2n-bit	numbers	by	three	multiplications	of
n-bit	numbers,	thus	yielding	a	O(nlog2	3)	≈	n1.58	time	algorithm	for	n-bit	multiplications,	better
than	the	conventional	Θ(n2)	algorithm.)

Strassen’s	 algorithm	 is	 tricky	 to	 implement	 both	 correctly	 and	 efficiently,	 but	 its	 utility
under	a	good	implementation	is	not	merely	theoretical.	The	discovery	that	n	×	n	matrices	can
be	multiplied	using	nlog2	7	≈	n2.8	multiplications	led	to	the	still	unsolved	problem	of	how	much
smaller	 the	 exponent	 can	be.	As	of	 this	writing,	 the	 answer	 is	no	more	 than	2.373,	but	no
lower	bound	greater	than	2	is	known;	these	more	exotic	algorithms	are	not	practically	useful,
however.

This	 paper,	 alongside	Karatsuba	 and	Ofman	 (1962),	 established	 the	 divide-and-conquer
technique	 as	 a	 tool	 for	 a	 variety	 of	 algorithmic	 problems.	 The	 implications	 for	 efficiently
solving	systems	of	linear	equations—which	give	the	paper	its	title—are	remarkable	in	their
own	right.
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30.1
BELOW	 we	 will	 give	 an	 algorithm	which	 computes	 the	 coefficients	 of	 the	 product	 of	 two
square	matrices	A	and	B	of	order	n	from	the	coefficients	of	A	and	B	with	less	than	4.7	·	nlog	7
arithmetical	operations	(all	logarithms	in	this	paper	are	for	base	2,	thus	log	7	≈	2.8;	the	usual
method	 requires	 approximately	 2n3	 arithmetical	 operations).	 The	 algorithm	 induces
algorithms	 for	 inverting	 a	 matrix	 of	 order	 n,	 solving	 a	 system	 of	 n	 linear	 equations	 in	 n
unknowns,	 computing	 a	 determinant	 of	 order	 n	 etc.	 all	 requiring	 less	 than	 const	 nlog	 7
arithmetical	operations.

This	fact	should	be	compared	with	the	result	of	Klyuev	and	Kokovkin-Shcherbak	(1965)
that	Gaussian	elimination	for	solving	a	system	of	linear	equations	is	optimal	if	one	restricts
oneself	to	operations	upon	rows	and	columns	as	a	whole.	We	also	note	that	Winograd	(1968)
modifies	the	usual	algorithms	for	matrix	multiplication	and	inversion	and	for	solving	systems
of	linear	equations,	trading	roughly	half	of	the	multiplications	for	additions	and	subtractions.
It	is	a	pleasure	to	thank	D.	Brillinger	for	inspiring	discussions	about	the	present	subject	and
S.	Cook	and	B.	Parlett	for	encouraging	me	to	write	this	paper.

30.2
We	define	algorithms	αm,	k	which	multiply	matrices	of	order	m2k,	by	induction	on	k:	αm,	0	is	the
usual	 algorithm	 for	 matrix	 multiplication	 (requiring	 m3	 multiplications	 and	 m2(m	 −	 1)
additions).	αm,	k	already	being	known,	define	αm,	k+1	as	follows:

If	A,	B	are	matrices	of	order	m2k+1	to	be	multiplied,	write

where	the	Aik,	Bik,	Cik	are	matrices	of	order	m2k.	Then	compute

using	αmk	for	multiplication	and	the	usual	algorithm	for	addition	and	subtraction	of	matrices
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of	order	m2k.
By	induction	on	k	one	easily	sees
Fact	1.	αm,	k	computes	the	product	of	two	matrices	of	order	m2k	with	m37k	multiplications

and	(5	+	m)m27k	−	6(m2k)2	additions	and	subtractions	of	numbers.
Thus	one	may	multiply	two	matrices	of	order	2k	with	7k	number	multiplications	and	less

than	6	·	7k	additions	and	subtractions.
Fact	 2.	 The	 product	 of	 two	 matrices	 of	 order	 n	 may	 be	 computed	 with	 <	 4.7nlog	 7

arithmetical	operations.
Proof.	Put	k	=	⌊log	n	−	4⌋,	m	=	⌊n2−k⌋	+	1;	then	n	≤	m2k.	Imbedding	matrices	of	order	n	into

matrices	of	order	m2k	reduces	our	task	to	that	of	estimating	the	number	of	operations	of	αm,k.
By	Fact	1	this	number	is

by	a	convexity	argument.
We	now	turn	to	matrix	inversion.	To	apply	the	algorithms	below	it	is	necessary	to	assume

not	only	 that	 the	matrix	 is	 invertible	but	 that	 all	 occurring	divisions	make	 sense	 (a	 similar
assumption	is	of	course	necessary	for	Gaussian	elimination).

We	define	algorithms	βm,	k	which	invert	matrices	of	order	m2k,	by	induction	on	k:	βm,0	is	the
usual	Gaussian	elimination	algorithm.	βm,	k	already	being	known,	define	βm,	k+1	as	follows:

If	A	is	a	matrix	of	order	m2k+1	to	be	inverted,	write

where	the	Aik,	Cik	are	matrices	of	order	m2k.	Then	compute
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using	 αm,	 k	 for	 multiplication,	 βm,	 k	 for	 inversion	 and	 the	 usual	 algorithm	 for	 addition	 or
subtraction	of	two	matrices	of	order	m2k.

By	induction	on	k	one	easily	sees
Fact	3.	βm,	k	computes	the	inverse	of	a	matrix	of	order	m2k	with	m2k	divisions,	

multiplications	 and	 	 additions	 and	 subtractions	 of	 numbers.	 The	 next
Fact	follows	in	the	same	way	as	Fact	2.
Fact	 4.	 The	 inverse	 of	 a	 matrix	 of	 order	 n	 may	 be	 computed	 with	 <	 5.64	 ·	 nlog	 7

arithmetical	operations.
Similar	results	hold	for	solving	a	system	of	linear	equations	or	computing	a	determinant

(use	 ).

Reprinted	from	Strassen	(1969),	with	permission	from	Springer.
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